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(3 + k)-Dimensional Spacetime 
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A mathematical model of the universe involving more than four dimensions is 
constructed. The (3 + k)-spacetime is described, and the interaction theory of 
static charges is developed. An electromagnetic field theory is developed to show 
that Huyghen's principle and gauge invariance are not violated. 

1. I N T R O D U C T I O N  

O v e r  50 years  ago  J e a n s  (1935),  d u r i n g  a d i s c u s s i o n  o f  t he  a p p a r e n t  

i n d e t e r m i n a c y  o f  na tu re ,  t o ld  the  f o l l o w i n g  pa rab l e :  

Imagine, for instance, a race of blind worms whose perceptions were limited to 
the two-dimensional surface of the earth. Ngw and then spots of the earth would 
sporadically become wet. We, whose faculties range through three dimensions 
of space, call the phenomenon a rain-shower, and know that events in the third 
dimension of space determine, absolutely and uniquely, which spots shall become 
wet and which shall remain dry. But if the worms.. ,  tried to thrust all nature 
into their two-dimensional framework . . .  (they) would only be able to discuss 
wetness and dryness of minute areas in terms of probabilities, which they would 
be tempted to treat as ultimate truth. 

J e a n s  t h e n  w e n t  on  to say  tha t  he  fel t  tha t  this  i l lus t ra tes  t he  m o s t  p r o m i s i n g  

i n t e r p r e t a t i o n  o f  the  s i t u a t i o n  in m i c r o p h y s i c s :  a s i t ua t ion  w h i c h  still  exis ts  
t oday .  

T h e  p r e s e n t  p a p e r  is t he  o u t c o m e  o f  an  a t t e m p t  to c o n s t r u c t  a m a t h e -  

m a t i c a l  m o d e l  o f  t he  u n i v e r s e  i n v o l v i n g  m o r e  t h a n  f o u r  d i m e n s i o n s  tha t  

agrees  wi th  m a c r o s c o p i c  t h e o r y  and  can  be  u s e d  as a veh ic l e  to test  w h e t h e r  
a s i t ua t ion  as v i s u a l i z e d  by  J e a n s  can  exist .  

I t  t u rns  ou t  tha t  p o s t u l a t i n g  m o r e  d i m e n s i o n s  is no t  as s t r a i g h t f o r w a r d  

as was  first e n v i s a g e d ,  d u e  to  two  p r inc ip l e s ,  tha t  o f  H u y g h e n s  a n d  tha t  o f  

g a u g e  i n v a r i a n c e .  In  o r d e r  to a v o i d  such  diff icul t ies ,  it was  f o u n d  suff ic ient  
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to assume that spacetime comprises a union of subspaces of  four dimensions, 
which we call L-spaces. The contents of  the universe are supposed to be 
scattered among these subspaces; however, a given observer, through whose  
senses and equipment the universe is described, will have perceptions limited 
to one only of these subspaces. This observer will, accordingly, be in much 
the same situation as a worm-scientist of  Jeans '  parable. 

Section 2 is devoted to a descriptiol., of  what we have called 
(3 + k)-spacetime,  and, as an application, the interaction theory of static 
charges is developed in Section 3. It is here that Jeans '  prediction appears  
to be true. This section includes an attempt to determine k. 

In order to show that Huyghen 's  principle and the principle of  gauge 
invariance are not violated, it is necessary to develop an electromagnetic 
field theory to some extent, and this is done in Section 4. 

2. D E S C R I P T I O N  O F  ( 3 + k ) - S P A C E T I M E  

Weyl (1949) pointed out that "intuitively evident meaning can only be 
attached to spatio-temporal  proximity and coincidence." Accordingly, the 
world-points under consideration will be assumed to be neighboring in 
order to assist in this initial description. This enables an observer to represent 
the usual 4-dimensional spacetime [or (3+ 1)-spacetime] locally by a 
diagram such as is shown in Figure 1. The lines t = const are more commonly 
replaced by planes in such a diagram, but we need a perspective diagram 
for our developments,  so in Figure 1 the three spatial dimensions have been 
crowded into a single dimension. The dashed line s = const represents a 
point fixed in space according to the observer at different epochs t. A body 
permanently located at this point would have a world-line coincident with 
the s = const line. Such a line is called a fiber. Clearly there is a continuum 
infinity of  such fibers. 

World line of~ o moving body~~ 
~time(t) I S= constant i,,J 

o spuce(s) 

, t= constant 

Fig. 1. Representation of a small region of (3 + 1)-spacetime. 
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Weyl describes the situation very succinctly: (a) All simultaneous 
world-points (t = const) form a 3-dimensional stratum, (b) all world-points 
of equal location (s = const) form a 1-dimensional fiber. 

In what follows the word location will always refer to a place in ordinary 
3-dimensional space. 

The possibilities for carrying out Jeans' suggestion of increasing the 
dimensionality of spacetime are severely restricted by the following two 
results: the first is that the wave equation (in n spatial dimensions) shows 
that Huyghen's principle can only hold when n is odd (Courant and Hilbert, 
1966). Put more picturesquely, one can only be sure that darkness follows 
when the candle is extinguished if the number of spatial dimensions is odd 
(Weyl, 1949). The second result is that the principle of gauge invariance 
holds if, and only if, spacetime is 4-dimensional (Weyl, 1949). 

On combining these two results with the fact that common experience 
shows that there are at least three spatial dimensions, one sees that if the 
two principles are to be preserved, then the spacetime of the observer must 
indeed be a (3 + 1)-spacetime. 

At first sight this seems to rule out Jeans' suggestion. However ,  we 
shall proceed by modifying Weyl's description of spacetime by leaving (a) 
unchanged and replacing (b) by the following: 

(b') All world-points of  equal location form a k-dimensional fiber space 
(k> 1). 

It will turn out that the two principles mentioned above can now be 
preserved (Section 4) and at the same time a certain type of apparently 
spontaneous event no longer appears to be spontaneous, as was forecast 
by Jeans (Section 3). 

In the new description of spacetime, namely (a) and (b'), the term fiber 
space implies that through every point of the space there passes at least 
one fiber. Our fiber space is a normed vector space, and in what follows in 
Section 3 the norm is assumed to be locally Euclidean. 

To each fiber there corresponds a (3+l) -spacet ime which is locally 
Lorentzian. We call these spacetimes Lorentz spacetimes or, more briefly, 
L-spaces. The L-spaces are embedded in our (3 + k)-speactime; this latter 
we denote by or. Note that all the L-spaces of tr have a common 3-space. 

The diagram of Figure 1 is now replaced by that of Figure 2. In Figure 
2 only two L-spaces are shown, L~ and L2, with their respective fibers [1] 
and [2] at the particular location s--const ,  which is represented in the 
diagram by an infinite plane. 

A body is said to belong to (or to be in) a given L-space if a fiber of 
the L-space passes through each point of its world-line. In particular an 
observer considers itself at rest at the location s = const in a given L-space, 
L~ say, if its world-line coincides with the fiber [1]. Furthermore, the same 
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_ _  _ _ t 2 =  c o n s t o n t  

t I = c o N s t o n t  

s = c o  r l s t o  r l t  

s p a t  iol o r i g i n  

Fig. 2. A rep resen ta t ion  of  a smal l  region of  o-. 

observer can mark off a time scale along that fiber of  L~ that is located at 
the chosen spatial origin. This scale is shown as tl in Figure 2. The scale 
t2 has been determined by an observer belonging to L2. The epochs tl = 0, 
t2 = 0 are chosen arbitrarily by the respective observers. 

3.1. INTERACTION T H E O R Y  

3.1. Electrostatic Example 

In order to construct a theory from the hypotheses (a) and (b') of  the 
last section, a number  of  assumptions will be made. These will be labeled 
A1, A2, �9 �9 and will be introduced at the appropriate  stages in the development 
of the theory. 

A1. An observer belonging to a given L-space, when making observa- 
tions of  events associated with bodies 2 belonging to other L-spaces, will 
interpret the results as if his is the only L-space that exists. 

The statistical nature of  present-day physical theory is a direct outcome 
of this assumption if the universe does in fact consist of  interacting sub- 
spaces. 

Let us now suppose that a point charge of  strength q coulombs belong- 
ing to the L-space L1, say, produces an electric flux at world-points of  the 
observer 's  L-space, which we denote by L2. 

Consider three world-points A in L1 and B and C in L2. Suppose that 
the spatial parts of  A and B are located at the origin and let C have spatial 
coordinates (Xl, x2, x3). For simplicity, B and C are supposed mutually at 
rest according to the observer in L2. 

A world-point in cr has coordinates (x~, x2, x3, 01,02, �9 �9 �9 Ok), which 
are abbreviated to (x, 0), where the bold letters refer either to 3- or k-vectors. 

2We use the t e rm body in the genera l  sense  of  any  ent i ty  wi th  a world- l ine .  
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The (3 + k)-dimensionai  worm vectors appearing in the next section will be 
denoted by script letters. 

The coordinate (xl ,  x2, x3) are spatial; that is, they refer to a point in 
ordinary space. The coordinates (01, 0 2 , . . . ,  Ok) are temporal,  and refer to 
a point in fiber space. 

It is shown in the Appendix that given any two (straight) fibers from 
different L-spaces but at the same location, then to every point of  one fiber 
there corresponds a point on the other that is to be regarded as s ' :nultaneous.  

Let the observer choose a time scale along the fiber [2] (Figure 3) such 
that at 0, t = 0. The event B occurs at a time interval t seconds later. Also, 
let the k-vectors 0 have 0 as origin. 

Figure 4 shows the fibers [1] and [2] in fiber space; this is more fully 
illustrated in Figure 8. 

Let M on [2] and M '  on [1] be the simultaneous pair that are nearest 
(see Appendix) to each other in fiber space and denote M M '  by a. It is 
convenient to define unit k-vectors u, v and w by the formulas (see Appendix) 

00 = 0, 0M = toy, 0B = tv 

0M,-  0M = aw (since M and M '  are simultaneous, v and w are mutually 
perpendicular) and 

0 a - -  0 M,  = ( t  - -  t o )U  

It follows that 

~ 2  [0A__0BI2 [(OA--OM') 'q-(OM'--OM)~-OM--OBI 2 

: I ( t -  t o ) ( u - v ) +  

= ( t -  to)2C~2 + 2 a ( t  - to)[3 + a 2 

J J 

I 
o 

C 

Fig. 3. The simultaneous trio A, B, C and the simultaneous pair 0, 0' in the spacetime tr. 
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B 
/ 

A 

[1] 12 ] 

W 

u: 't 
t ~ v 

_No 1 
0 "  

0 

Fig. 4. The unit k-vector u, v, and w in fiber space. 

We call a = ] u -  v] = [2(1 - u -  I / ) ]  1 / 2  and/3  = u - w  the obliqueness factors. 
Note  that since v - w  = 0, then if u �9 v = 1, so that  u = v, we have 

a =/3 =0 

In this case t h e  L-spaces  L1 and L2 are said to be parallel. If, in 
addit ion,  a = 0, L1 and L2 are identical. 

The wor ld-poin t  C, which belongs to the same L-space  as B (Figure 
3), is defined to be s imul taneous with B in the normal  manner  (see, e.g., 
Eddington,  1946). This means that  0c  = OB. We shall also denote  the spatial 
separat ion between C and A by r. It follows that the interval between A 
and C is given by 

A C  2 = Ix[ 2 -  : 1 0 c  - 0AI ~ = : -  c ~  2 

In obta ining this formula  it was noted that  0 has the dimensions o f  
time, and in order  to made  the spacetime o- compat ible  with, say, that  o f  
Minkowski,  0 has been mult ipl ied by the usual  factor  ic, where c is the 
speed of  light th rough  ordinary  space. 

I f  we now write 

s = c [ ( t -  to)2a=+ 2 a ( t -  to)~3 + a2] 1/2 

= c(O C --OA): c(O B --OA) 

then C has the real coordinates  (x, 6) with A as the origin (0, 0) in or. Also, 
C lies on a member  o f  the family o f  hyperhyperbolo ids  

~ 2 ~ . . .  r ~ _ s  ~ x ~ + x ~ + x ~ - ~ , - ~ -  - ~ =  =-A-C ~ 
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Note, in particular, that the interval A C  is fixed over any member  of  the 
given hyperhyperboloid family in o-. 

Suppose, now, that at a certain epoch a point charge q is at A in L1. 
In order to calculate the magnitude of its flux density at C in L2, the usual 
concept of  flux distribution will have to be extended, as mentioned earlier. 
We introduce the following two assumptions, which are extensions of  the 
usual ones for an isolated charge at the origin: 

A2. The magnitude of the flux density at a world-point C simultaneous 
with the world-point A is a function of the interval [A-C[ only; the sign of 
the flux is that of  the charge q. 

A3. The flux lines are normal to the family of  concentric spheres in 
ordinary space, Ix[ = const, and are such that 0 = const along their lengths. 
This condition implies that ~--const  along a flux line. 

As C roves over a given member  of  the family of hyperhyperboloids,  
the magnitude of the flux density at C will remain constant by A2. 

Condition A3 appears  less arbitrary if the usual 1-dimensional fiber 
space is considered, for in this case the 1-vector 0 becomes tu, where u is 
a fixed unit vector. The condition 0 - -cons t  becomes the same as the 
statement that t is constant along flux lines in electrostatics: that is, flux 
lines do not extend into the past or future. 

Figure (5) shows a plot of I~1 versus Ix] for three members of  the 
corresponding family of  hyperbolas. In particular, the asymptote Ix[ 2 -1~12 = 
0 corresponds to the asymptotic hypersurface x~ + x 2 + x3 2 - s e2 - ~2 . . . .  ~:~, = 
0. This passes through the origin A (0, 0) in tr occupied by the point charge, 
and where the magnitude of the flux density is therefore infinite. It follows 
from A2 that there is infinite flux density at every point of the asymptotic 

S It 

S j 

Fig. 5. 

j / , / c p  

Graph of Ixl 2 -I~1 ~ = r~ - 4 for various positions of C in o-, with q > 0. 



1 2 3 4  Newton 

hypersurface. Of course, if C lies on this hypersurface, the interval A C  is 
zero. 

Again A3 shows that the flux is represented in Figure 5 by arrowed 
horizontal lines, only three of which are shown. 

Suppose now that C has coordinates xc, 6c such that [xc[ = r', 16c]-- s'. 
The corresponding point is marked C1. The flux will appear to the observer 
to emanate from a charge of  magnitude p situated not at the spatial point 
occupied by q, but at a point distant r ' - s '  away from the observer, repre- 
sented by Cp, in Figure 5. Since Figure 5 only gives s' as the spatial coordinate 
of p, it might be argued that p could be distributed over a sphere of radius 
s'. However, because Cv, lies on the asymptote, the flux density, and hence 
the apparent charge density, is infinite. Finte total flux requires p to be a 
point charge. 

Let the magnitude of the apparent charge seen from C~(r', s') be 

Pl = h , q  

where h~ is to be determined, and call this the apparent source of the flux. 
If D is the magnitude of  the flux density at C, then, by A3, integration 

over the surface of the sphere of radius Cp~C~ = r ' -  s' gives the charge 

Pl = 4 7 r D ( r ' -  s') ~ 

On the other hand, the apparent source is at A, coinciding with the 
true source (so that p = q), when C lies at a point corresponding with Co 
in the diagram. Integration over the sphere of  radius 0Co gives 

q = 4zrD(r '2 - s t 2 )  

Assumption A2 ensures that D is the same in both formulas. On combining 
the two formulas we get 

r p _ S p 

,~ , -  ( r ' >  s') 
r '+s '  

If r' is fixed, the passage of time will vary s away from s'. Thus, if we 
allow s to increase, h will decrease to zero. The question now arises: What 
happens to A as s continues to increase? 

Suppose s reaches a value s". Now C will have coordinates such that 
[Xcl= r', [6c[= s", with r ' <  s". The corresponding point in Figure 5 is C2, 
and it lies on a branch of  the family of hyperbolas with imaginary A C .  Let 
this cut the 161 axis at s0." Since this hyperbola is Ixl 2-161 = = / 2 _  s"2, then So" 
is obtained by substituting Ix I = 0. Hence s~ 2= s " 2 - / 2 .  

Hypothesis A2 ensures that the flux density at C2 is the same as that 
P _ _  at C~ provided that So - 0 C o .  
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I f  D is the magnitude of the flux density at these points, then the apparent  
charge seen from a point on the surface represented by C3(0, s~) is 

P3 = 47rDs'o 2 = 47tO. OC~ = q 

The apparent  charge seen from a point on the surface represented by 
C2( r', s") is 

P2 = 47rD( s " -  / )2 = (g /  sg2)( s,,_ / )2 

tr2 S . 2  - -  t2 But So = r , and so 

S"- -  F ~ 
P2=s, ,+r iq=A2q,  say 

Comparing this with the formula for A, we see that in general 

Ir-sl A -  
r + s  

3.2. Determination of k 

We begin by looking at our model from a slightly different point of  
view (Figure 6). Although we have used the same labels in Figure 6 as in 
Figure 5, the hyperbolas shown in the two figures need not be the same. In 

Fig. 6. 

ffJ 

The point Cj representing the charge q as seen from a point on the surface represented 
by C3(0 , s~). 
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the case shown in Figure 6 all the flux lines from q touch the hyperhyper- 
boloid at its intersection with the k-flat x~ = 0, x2 = 0, x3 = 0, namely the 
hypersphere 

r + r + . .  o + r = - X C  2 = So "~ _>o 

This is represented by Ca in the figure. 
Remembering that IA--CI is now the radius of  this hypersphere, we see 

that assumption A2 implies that the flux lines from q meet it in points that 
are distributed uniformly over its surface with a density of  magnitude D' ,  say. 

We can now obtain q by integrating D '  over the surface of the 
hypersphere. The result is 

2 ~ k / 2  
- -  D , ( s  .2 _ r ' 2 ) ( k - 1 ) / 2  

q - F(k /2)  

We return to the method used in Section 3.1; since q is apparently 
situated at the center of  a sphere in ordinary space of radius CaCq (see 
Figure 6) with C on the hyperhyperboloid,  we see that the density D '  at 
C is the same as in the above formula, and also that q can be obtained, 
using the assumption A3, by integrating D '  over this sphere. The result is 

q = 4 ~ D ' ( s  "2 _ r ,2) 

These two formulas are consistent if, and only if, k = 3. 
We conclude that o- is a 6-dimensional (3 + 3)-spacetime. 
Strictly, this result merely states that fiber space and ordinary space 

have the same number  of  dimensions. I f  some future investigation suggests 
that the number  of  spatial dimensions should be changed, then a similar 
change must be made in the number  of  dimensions of  fiber space. 

A rather striking consequence of the formulas so far developed is 
illustrated by the equation 

q = 4~-DIr 2 - s21 

where the primes have been dropped. The parameter  s is t ime-dependent,  
but the shape of the s versus t curve depends upon the relative magnitudes 
of  to, a, and the obliqueness factors. Two examples are shown in Figure 7a. 

If  L and L2 are parallel, then s = ca, and there is no time variation. 
For nonparallel L-spaces we expect a time variation in /9, since q is 

fixed, by hypothesis. The behavior of  D with time depends upon the initial 
values, and Figure 7b illustrates three examples. 

The singularities at t = tl and r2, for example,  are represented by the 
asymptote of  Figure 5. 
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So 

o to tb 

r>ca>s o 

~>0 

S ca<r<s ~ 

~>0 j 

to . . . . . . . . . . . . . .  

t 
0 tL tQ t~ 

Fig. 7. 

D 

J 
E'>C8.)8 0 

.9>0 

0 

D 

_Y 
ta 

ca4Er 0 

, a - T  

t 
o t~ tz 

D 
ca>So> r 

/3>0 

a~ 

o t 

(a) The difference in shape  of  the s versus t curve in two par t i cu la r  cases. (b) The 

var ia t ion  of D with time when r is fixed in three different cases. 
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I f  the L-spaces are parallel, t~ moves off to -oe  and t 2 to +oe and the 
flux density is such that 

q 
D -  

4~r( r 2 - c2 a 2) 

showing no time variation. 
Now suppose that the observed flux density is accompanied by an 

observed electric field of  magnitude 

E = D~ eo 

where eo is the permittivity of  the observer 's  L-space. I f  there is no 
polarizable medium present, the electric field E and the flux density D are 
parallel-and have the same direction as the radius vector to the point of  
observation in ordinary space from the origin xl = 0, x2 = 0, x3 = 0, which 
is the location of  the charge q. Accordingly D = D r / r  and so the electric 
field is 

qr 
E -  

4~-eor(  r 2 - s 2) 

It is readily verified that the scalar potential function 

~b= q log r + s  
8~'eoS Ir -- sl 

satisfies the usual electrostatic formula 

E = -V~b 

It follows at once that the principle of  superposition holds. 
Consider now a charge distribution in L1 contained within a fixed spatial 

volume V. I f  the charge density is p~ within an element of  volume d V  then 
the potential at C in L2 due to the charge in d V  belonging to L~ is  

Pl d V  
d,~= 

4~'eoR 

where 

2S 
R = R ( r , s ) -  

l og[ ( r+s) / ] r - s ] ]  

Note that R(r,  O) = r. 
From the superposition principle the potential at C due to the whole 

distribution in L~ is 

4, = o,  - f f  

v 
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where in order to carry out the integration the spatial origin has been 
transferred from the elementary charge to the observed point C in L2. 

This potential does not satisfy the Poisson equation vz~b = - p l / e o .  
In view of the time dependence of R, there is a secular change in d 

(and hence in the corresponding E) at C, even when Pl is fixed. However, 
as we saw earlier, the observer will not assign a charge density of Pl at a 
given point. In fact, the observer will replace the elementary charge pl dV 
by an apparent charge hpl dV in a volume element dV', say, located at a 
different site. Thus, if/912 is the apparent charge density in L2 due to a 
charge distribution in L1, then P12 dV' = Ap~ dV. If r is the distance between 
pl dV and C in ordinary space, then the corresponding distance between 
p12 dV' and C is, as we have seen earlier (vide Figure 5), r '=  I r - s l .  3 Writing 

! ! where (x~,x2,x3) are the spatial coordinates of P12 dV' with dV'= 
dx~ dx; dx~ and C as origin, we have at once that V'2(1/r ') =- O, and so from 
the usual argument from one of Green's theorems the formula 

= 7dr' 
V 

is a solution to Poisson's equation V'2~b =-p12/e o .  

Our observer (who is in much the same situation at Jeans' worm- 
scientist) will, from his much more common experience of charge distribu- 
tions belonging to his own L-space (when R - - r =  r'), assume that all 
detectable fields and charge distributions satisfy Poisson's equation, thereby 
thrusting the apparent charge density pl2 into the above framework in 
accordance with A1. Accordingly, he will use the formula 

1 f l ; P ' 2 d V '  
4~ = ~ r' 

V 

rather than 

l f f y P ~  
V 

There is a secular change in ,012 because of the factor A. 

3Here r' is different from that in Figure 5. 
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Finally, if there is also present a charge distribution of density p2 in 
L2 occupying the same fixed volume V, then by superposition the potential 
~b is given by the observer as 

q5 = 47re-----o J r - -  V 
with V'2~ = -(P12 + P2)/eo.  

Of course the observer sees no secular change in p2. 

4. ELECTROMAGNETIC THEORY 

The fact that our observer is describing his results in terms of his own 
L-space, whichis a (3 + 1)-spacetime, suggests strongly that Huyghen's prin- 
ciple and the principle of gauge invariance hold as far as he is concerned. 
To check that our theory agrees with this, we develop electromagnetic theory 
in tr a short way. We find that we shall need one further assumption, namely 
A4, which will be given shortly. 

In the development of  the field equations it is convenient to use a form 
of vector product  employed by Rutherford (1943). If A = (al ,  a2, a3) and 
B(bl, b2, b3) are any two 3-vectors, and 

C12 = a l b 2 -  a2bl ,  C23 = a2b3 - a3b2, C31 = a3bl - al b3 

then the usual definition of  vector product is 

A •  (C23, (]31, Cl2) 

On the other hand, Rutherford's definition, which we call the matr ix  vector 

product ,  is defined by the skew symmetric matrix 

(0 C12 C13~ (FI/ 

\ C31 C32 I~3 
where 171 = (0, C12, C13), F2(C21,0, (723), 173 = (C3l ,  C32, 0). 

The dot product between two vectors is the usual scalar product 

A �9 D = ald~ + a2d2+ a3d3 

Thus 

D . (Ax B) = dlf23-[-d2C31q-d3C12 

is a scalar, whereas 

D -  (A^ B) = ( D .  F~, D .  F2 ,D"  r3) 
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o p e r a t o r  V = 

0, b12, b13," " ", b16 ~ o t ~ i ) 
\b61,"  . , b65, 

Of the 36 elements in tnls mamx, l~ are 

It is straightforward to show that if 4 is differentiable, then 

�9169 

where b u = Oaj/Oxi -Oai/Oxj. 
independent. 

and 

and the matrix curl of sr as 

the 6-divergence of ~ / a s  

~ = ( a l ,  a2, a3, a4, a s , a6 )  

and the 6-vector-differential operator analogous to d'Alembert's operator as 

OX 1' OX 2' OX 3 ' OX 4' OX 5' 

where x4 = ic01, xs = ic02, and x6 = ic03. Define the 6-gradient of the scalar 
as 

o4 o4 o4 04) 
(04 = , ON 2' ON 4' ON 5' OX6] 

� 9  ~ 
i 1 

O. (0 ^ s~) --- 0 ( 0 . . ~ )  - O~s~ 

is a vector. If A and D are both replaced by the 
(O/OXl, O/Ox2, O/Ox3), then V- (V x B) --- 0 and 

V �9 (V ^ B)-= V(V �9 B ) - V 2 B = -  V x (V x B )  

We call V ^ B the matrix curl of B. 
Rutherford used the matrix definition in his treatment of 4-vectors, and 

we shall follow his lead in the development of world-vectors in or. 
Having decided in Section 3 that the space cr is a six-dimensional 

(3 + 3)-spacetime, it follows that world vectors in cr will have six components, 
and so will be 6-vectors. 

Write the 6-vector ~r as 
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where 

6 0 2 
0 ~= O" 0 = ;=IZ ox ~, 

There are 20 further identities among the bu; let auk denote the 3-vector 
whose components  along the i, j, and k axes are ai, aj, and ak, respectively. 
The identities 4 V �9 (V x auk ) --~ 0 can be written as 

Ob, k+Obki+Obo=o 
OX i OXj OX k 

where the (unequal) suffixes run from 1 to 6. Denote these 20 identities by 
the symbol (•k). Thus, if the magnetic flux density is introduced as B = 
(B1, B2, B3)= (b23, b31, b12), the identity (123) gives V .  B = 0 .  This is con- 
sistent with setting al = AI ,  a2 = A2, a3 = As, where A~, A2, and A3 are the 
three components  of  the usual vector potential according to our observer 
in L2. 

Our final assumption is as follows: 

A4. The 0 variation implied by the operator O shall act along the 
observer 's fiber in the direction of increasing t. 

From this, if  l, m, and n are the direction cosines of  the observer 's 
fiber, the components  of  O are O/Ox~, O/Ox2, O/Ox3, ( I/ ic) O/Ot, (m/ ic) O/Ot, 
(n/ic) O/Ot. 

Again 54 and ~ are the 6-vector potential and 6-current density, 
respectively, defined in terms of the observer 's measurements.  Accordingly, 

54 = ( a l ,  Az, a3, dO~c, imch/c, inr 

= tZo(Jl, J2, Js, iclp, icmp, icnp) 

where P.o is the permeabili ty of  the observer 's  L-space, O is the scalar 
potential at a point, p is the charge density at the same point, including 
any apparent  charge, and J1, J2, J3 are the components  of  current density 
J,  all according to our observer. 

The remaining calculation becomes more persuasive if the axes in the 
fiber space are rotated so that l = 1, m = n = 0, for then 54 and J behave 
as Rutherford's  4-vectors, and the field equations that correspond to his are 

O .  54 = 0, 0254 = - ~ ,  O .  4 ~ -- 0 

(when no sinks or sources are present). 

4We have temporarily written V = (O/Oxi, O/Oxj, O/Oxk). 
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The second equation with one of our identities gives the additional 
equation 

O. (0  ^ •) =4~ 

It is easily verified that the first equation gives the Lorentz condition 

V .A+40~b=o 
c Ot 

where A = (A1, A2, A3). Again, 

1 0 2 O2___V2 __[~2 
C 2 0 t  2 

is the d 'Alambert ian and so the second equation gives 

[-q2A : -/./,o J and E324) = -p/so (c 2= 1//*0eo) 

When p = 0 the last is the wave equation of (3 + 1)-spacetime, so the two 
principles are not violated in our model. To complete the calculation, we 
note that the triads of  identities [124], [125], [126]; [234], [235], [236]; and 
[314], [315], [316] give the three components of  the Maxwel l -Faraday 
equation 

V x E = -0B/0  t 

and the fourth of  the above field equations gives the Maxwel l -Ampere  
equation 

VxH=J+OD/Ot (H = B//,o) 

These results are unaffected by our rotating the axes in fiber space. 

5. D I S C U S S I O N  

One of the interesting consequences of  the present model is the appear- 
ance of the singularities shown in Figure 7b. For example, one might 
speculate on what would happen if two particles orbiting about one another 
belong to separate nonparallel L-spaces. To answer this rigorously a 
dynamics in o- must first be developed, and this has not been done, but if 
the pair are created at an epoch t = 0 earlier than t, in the case when/3 > 0, 
to< afl/a 2, and initially r >  So then we must expect the force of  attraction 
to increase indefinitely as the age of the pair approaches the value tl. This 
will either result in a collision or more likely will cause an increasing angular 
acceleration and resulting radiation. One could tentatively suggest that this 
ageing property lies behind phenomena such as radioactivity. 
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I f  in the above case r < So initially, no singularity is encountered during 
ageing and the force just faces gently away. 

Another point that should be mentioned is that in line with our view 
of the role of  the observer in the development of  the theory, we have 
assumed that the 3-vectors of  the temporal part  of  the 6-vectors ~r and J 
are parallel with the observer 's  fiber. This was because such an assumption 
is implicit in current physics. However, if an attempt at further generalization 
is made by allowing the temporal  parts of  the 6-vectors to have different 
fixed directions in fiber space, all that happens is that a factor cos ~: appears  
in the equations. For example,  the charge density p in Section 4 becomes 
p cos ~. Here s c is the angle between the observer 's fiber a n d t h e  temporal  
3-vector of  the appropriate  6-vector. It turns out that the two principles still 
remain unviolated. 

A further point is that if u = -v ,  then/3 = - v  �9 w = 0 and ~ = 2. This is 
the antiparallel case, 

[13 , [2] B'  

L1 L2 

If  the arrows on the fibers [1] and [2] indicate the positive direction of 
time, that is, increasing t implies an overall increase in entropy of the two 
L-spaces L1 and L2, and if (A, B) and (A', B') are simultaneous pairs of  
events, then events in L1 will appear  to an observer in L2 to have their 
temporal  relationships reversed. In other words, an observer in LI will 
maintain that an event A occurred before A', whereas an observer in L2 
will maintain the reverse. Put more loosely, an observer might think that 
he had seen a particle "moving backward in time." 

There are no doubt many questions that need to be considered, but 
one outstanding one is whether a body can change from one L-space to 
another, nonintersecting one. It seems to me that such a change would 
require a force of  some kind. In other words, the problem will arise during 
the development of  a dynamics. Such a possibility could have a profound 
effect upon our picture of  the world, for a change of L-space could imply 
a change of  world-line. 

APPENDIX.  A NOTE ON SIMULTANEITY IN o- 

in Section 3 an extended notion of simultaneity is used, and here we 
attempt to justify our definition. 
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While within any given L-space the usual arguments hold for pairs of  
events, an extension is required when considering two events belonging to 
different L-spaces. The fibers are assumed to be straight in this preliminary 
study of the spacetime o-. 

In Figure 8 0B is a portion of the fiber [2] located at the spatial origin 
in the frame of the observer in L2. Suppose that the t scale along this fiber 
has been chosen with 0 as the origin. Then 

= t = 10B[ 

since the coordinates of B in o~ are (0, 0B). 
For the moment  let A be any point on the fiber [1], say. We wish to 

find a geometrical construction that will define a scale along 0A (which may 
not be a fiber), which is in 1 : 1 correspondence with the t scale along [2]. 

Let O A R  = 0 A - -  0 B SO that 

OB " O A B  = 0 B �9 0 A - -  t 2 

We say that if A and B are at the same location, then they are 
simultaneous if 10A[ = ]0BI. 

p• t - t  

A 

~ o 

/ / 

Fig. 8. The simultaneous events A and B belonging to different L-spaces. 
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It follows at once that when A and B are simultaneous 

0B" 0A~ = 0 

that is, 0B and 0AB are orthogonal. 
The construction required is made easy if we anticipate the result of 

Section 3.2 and set k = 3, for then the vector 0AB is seen to lie in the plane 
P of Figure 8 with [2] as normal. Therefore, if a family of planes, all parallel 
with P, is arranged to cut [2] at given scale points 0A, any fiber such as 
[1] will be intersected by this family at corresponding scale points, since it 
understood that all points of any given plane of the family are mutually 
simultaneous. 

There is no reason to suppose that the fiber [1] passing through A 
should intersect [2], although it might. There will, however, be a member 
of the family, P', that cuts [1] and [2] at simultaneous points M'  and M, 
respectively, such that 

M M '  = a = min]0M - 0M,I -> 0 

Having constructed scales along [1] and [2], it is possible to define unit 
vectors u and v along these fibers respectively from 0' and 0, the simultaneous 
pair chosen as time origins. 

The event M may be before or after 0. Accordingly, if v is in the 
direction of  increasing t, and if the time interval between 0 and M is to, 
then 0m = toy when M is later than 0, and 0M = -toV when M precedes 0. 

Unless [1] and [2] are parallel, the scale along [1] will be expanded 
by comparison with that along [2]. 

Of course, there is no difficulty, in principle, in extending the definition 
of simulaneity in fiber space for general k. The family of planes will be 
replaced by a family of (k -1 ) - f l a t s  and the treatment proceeds as above. 
Accordingly, the argument for k = 3 is not circular. 
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